Люди соревнуются друг с другом ... ч.2

количество просмотров489   24-08-2017, 16:18
будто забыв о том, что они никогда не обыграют программу» (Часть 1)

Считается, что в информационном обществе идеал структурного производства выглядит следующим образом. Есть внешний мир — люди, заводы, «умные» дома, — который создаёт огромное количество данных. «Умные» алгоритмы преобразуют эту информацию в человекочитаемый вид.

Дальше человек принимает решение. Другой человек, программист, воплощает его в цифровой форме, которая что-то меняет в этом мире: встраивается в производственный цикл, перераспределяет потоки продуктов в магазины, настраивает температуру дома.

Люди соревнуются друг с другом ... ч.2

Когда есть повторяющиеся и слегка изменяемые ситуации, алгоритм, обучающийся на исторических данных, работает лучше. В условиях растущего количества производств человек оказывается лишним, ведь он ошибается чаще.

Люди соревнуются друг с другом ... ч.2

При этом возможность внедрить в схему «умную» машину становится доступна всем, поскольку произошла революция, которую никто не заметил, — революция открытых источников. Алгоритм, который умеет учиться, ещё десятилетие назад считался бы главным коммерческим секретом компании, а теперь его публикуют в открытом доступе.

Google предоставила всем доступ к TensorFlow — алгоритму обучения при помощи глубоких нейронных сетей. В июле «Яндекс» опубликовал свой CatBoost — алгоритм, использующий градиентные ускорения и эффективно работающий на промышленных задачах.

Для того, чтобы начать пользоваться этими технологиями, нужен всего один программист среднего класса вместо команды компьютерных гениев. Microsoft описывает это термином «демократизация технологий».

Люди соревнуются друг с другом ... ч.2

Компания McKinsey, которая занимается промышленным консалтингом, опубликовала текст, в котором употребила фразу со свойственной американской политкорректностью: «Использование человека в цикле принятия решений становится непрактичным».

Люди соревнуются друг с другом ... ч.2

Поначалу надо мной смеялись, теперь смеются меньше. Если человек приходит учиться и говорит: «Покажите мне алгоритм, по которому надо работать», то он обречен. Алгоритму проще обучить любую машину.

Примеры

В выплавке современной стали всегда немного меняется сырье. Сталеплавильное производство получает металлический лом, который сегодня привезли из города, где сломали чугунную ограду, а завтра — с какой-нибудь автомобильной свалки. Это разный по составу металл, поэтому всякий раз нужно вводить добавки, чтобы сталь соответствовала требованиям.

Для этого технологи, знающие теорию металлургического производства и имеющие профессиональное чутьё, каждый раз подбирают новый режим. Но поскольку эти производства хорошо автоматизированы, на них ведётся запись сырья, технологических решений, результатов.

Если использовать эти данные для обучения программы, можно снизить расходы эффективнее, чем это сделает самый опытный и одаренный технолог.

Люди соревнуются друг с другом ... ч.2

Есть и другой пример. Модератор — человеческая роль. Клиент в этом случае — престижная сеть знакомств. Предположим, у неё есть огромный штат индусов, которые должны модерировать аватары пользователей так, чтобы там не было неприличного контента и изображений знаменитостей.

Если обучить индусов искать порнографию как-то удалось, то заставить их знать всех знаменитостей — никак. Они часто ошибались. Для нейросети это простая задача. Индусов освободили. Время модерации резко сократилось, а качество — повысилось. Увеличились и пользовательские оценки. Но индусы остались без работы.

Люди соревнуются друг с другом ... ч.2

Не так давно в США для диагностики нескольких типов рака кожи разрешили применять хорошо обученную нейронную сеть. Она ошибается реже, чем самые опытные дерматологи. На анализе изображений основано 90% медицинской диагностики, будь то рентгенограмма, УЗИ или что-то ещё.

Программу можно обучить распознавать невероятное количество визуальной информации. И она начнёт видеть то, что врач упускает. Однако люди привыкли слышать свой диагноз от врача, поэтому у многих возникает психологическая реакция отторжения на сотрудничество специалиста с машиной.

Люди соревнуются друг с другом ... ч.2

В 2016 году ещё невозможно было привести этот пример. Albert — маркетинговая платформа полного цикла. Она осуществляет практически все операции. Многие фирмы заявляют, что пользуются технологиями искусственного интеллекта, но Cosabella — компания-производитель нижнего белья — расформировала свой отдел маркетинга и полностью доверилась системе Albert.

В Cosabella говорят, что нужно отличать компании, в которых технологии искусственного интеллекта лишь приводят к инсайтам, от компаний, где все маркетинговые решения принимает нейросеть.

Люди соревнуются друг с другом ... ч.2

Есть очень много видов деятельности, которые может выполнять нейросеть. К примеру, сортировка мусора: его дорого перерабатывать, экономика не замыкается, нужны субсидии. Проблема в том, что мусор всегда немного разный, а чтобы его эффективно переработать, он должен обладать фиксированными характеристиками.

Это как с металлургией, где всё время немножко разный лом. Обученная программа позволяет сделать переработку мусора экономически выгодной. Это неплохое решение глобальной задачи.

Вопрос, который всегда задают на лекции о машинном интеллекте: мы вместе с технологиями или они вместо нас? Когда как. В случае с рутинными профессиями — технолог, ассистент врача, маркетолог — компьютеры способны замещать людей. Однако иногда они работают вместе: вместе с группой музыкантов, сыгравших на открытии конференции «Яндекса», вместе с врачом для постановки максимально точных диагнозов пациентам.

Я сформулировал четыре правила для каждого человека после 2020 года. Самое главное, как мне кажется, первое. Об этом ещё говорил Дмитрий Песков из Агентства стратегических инициатив.

Люди соревнуются друг с другом ... ч.2

У меня часто спрашивают, чему учить ребёнка. Ответ: учите учиться. Самые интересные профессии ещё не появились, и пока ими невозможно овладеть. Но вскоре они появятся. Десять лет назад не существовало профессии оператора беспилотника, а сейчас это интересная и популярная работа в самых разных сферах — от кинематографа до военных действий.

Напоследок я хотел бы порекомендовать две книги. Одна из них переведена на русский язык — это «Неизбежно» Кевина Келли. Вторая — Machine Platform Crowd пока вышла только на английском. Надеюсь, её когда-нибудь переведут. Первая книга больше про жизнь и про то, куда мы все идем. Вторая написана двумя экономистами. Она посвящена экономическому и коммерческому влиянию трёх основных трендов: машинное обучение, новые платформы и краудсорсинг в широком смысле этого слова. Именно эти три направления и изменят экономику в ближайшие несколько лет.

Люди соревнуются друг с другом ... ч.2

инфо и фото: vc.ru